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anisotropic case. The corresponding Maxwell-Minkowski equations 

have been derived under the condition that the velocity of the moving 

medium is small compared to the velocity of light. The theory is 

applied to derive the characteristic equation for the index of refrac- 

tion in a drifting magneto-ionic medium. The result verifies the 

previous one obtained by Epstein. Two different formulations based 

upon the convection current model and the polarization model a r e  dis- 

cussed in  detail from the p i n t  of view of the transforn; method. 
y As a- n. 
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Introduction: 

5 
The foundation of the electrodynamics of moving media was iaid 

1 
by Minkowski and based upon the special theory of relativity. For a 

moving isotropic medium, the complete treatment is given by Sommer- 

feld . When the velocity of the moving isotropic medium is small 
2 

compared to the velocity of light, the resultant wave equations can be 

greatly simplified . Several techincal problems arising from these 

wave equations have already been investigated 

3 

4, 5, 6, 7 

In this report we shall present an extension of Minkowski's theory 

to moving anisotropic media, the theory is finally applied to a drifting 

magneto-ionic medium to determine the normal modes of plane waves 

which can exist in such a medium. The characteristic equation for 

the index of refraction so obtained by the f i rs t  order relativistic trans- 

form method is the same as the one previously derived by Epstein 

using the EHPMv formulatiorr, originally adopted by Unz , and the 

equation of motion of a bound electron in a drifting r'agneto-ionic medixm. 

Finally, the equivalence betwem the convecticn current model aiitl the 

polarization current model will be discussed from the point of view of 

the transform method. 

8 - 
9 



First-order Relativistic Transformation of Field Vectors 

h this section, we shall first  review the relativistic transformation 

of the field vectors defined in Maxwell's equations as first recognized 

by Einstein and later elaboiatea by Minkowski. Two inertial systems 

(x, y, z )  and (x', y', z', ) are in relative motion. The primed system 

is assumed to be moving with a velocity wi th  respect to the unprimed 

system. The time variable in the two systems will  be denoted, respec- 

tively, by t and t'. Maxwell's equations and the equation of continuity 

defined in the syetems are: 

at ' 



If the velocity v ie small compared to the velocity of light, the 

firet-order relativistic transformation between the two seta of field 

vectors, resulting from neglecting terms of the order of (v /c )  ' 2  , is 

given byl0 

- E'= E + v x B 



- -  
J * m J - p &  

p ' = p p - -  1 V' - -  J 
2 

C 

If two material field vectors Pad E are used, euch that one writes 

and similarly for the primed qriar,tities, then *e first-order relativistic 

tmnsformatioa of the materiaA field vectors can be deduced from (7 - 10). 



e 
They are 

- p'=p-  - 1  - v x w 
2 

C 

The P'irst-order Constitution Relations between the Field Vectors defined 

in the Unprimed System: 

Let us assumethat constitutive relatione for an anisotropic medium 

in the primed eystem are known. In the most general case, they are: 

! 



where the sign "=" irj used to denljte a dladic. If the medium is disper- 

sive, it is understocd that E ,y I ,  and C '  wouid be functions of the 
- - - - 

frequency deiined in the primed system, which will be denoted by ~ 3 ' .  

By substiPitin6 (7 - 11) into (18 - ZO), we obtain 

C L  

B; eliminating Dor Bfrom (21 - 22) and neglecting te rms  of the order 

of (v/c) , we have 
2 



. .  . .  

Since v 5 = p, (26) rmry be w r i t t e ~  in tbe form 

2 Again, terms of the order of (v/c) have been neglected in deriving 

(27). Equations (241, (251, and (27) contain the first-order constitu- 

tive relations between the field quantities defined in the unprimed sys- 

tem in terms of the contitutive parameters known G r  given in the primed 

system. By substituting these equations into (4 - 5), we obtain the 

Maxwell-Minkowski wave equations for the field vectors E and k i n  

a movihg anisotropic medium which represent a normal extension 

of Minkowski's theory of moving media to the anisotropic case. 

The Magneto-ionic Theory for Drifting Plasma: 

In this section, we shall apply the above formulation to derive the 

characteristic equation for the index of refraction for a plane wave 

propagating in a drifting magneto-imic medium. The convection cur-  

rent model will be treated first. In such a model the plasma is assumed 



to consist of free electrons with a drift velocity v. The primed system 

is attached to the drifting electrons and the unprimed system is fixed 

to an observer. According to the well-known theory of stationary magneto- 

ionic media, the relation between the convection current3 and a har- 

monically oscillating electirc field E'with frequency w'  can be written 

in the form 
- 

(28) ;I. 3' =E' 

- 
where the dyadic r' is given by 

X'w'E 1 
0 J 

The parameters contained ic (29) are defined as  follows: 

u p  = glasma freqilency, 



w t  = collision frequency, 
C 

-Y I 
x Y' 0 

z 

-Y' Y 0 i Y X 

u t  , 

w = gyromagnetic frequency. m 

- - 
The dyadic G I  is clearly the reciprocal of d ' previously introduced 

in (201, i .e. ,  

In the convtbction current model, the medium is considered to be un- 

polarized and unmagnetized, henf:t., 



. 

/i'=pfo I 

Equations (24), (25), and (271, therefore, reduce to 

D= e o E  (33) 

on account of (33 - 34), (4 - 5) become, for a harmonically oscillating 

field, 

. .- I 

'c7 x E =  - j w / A  It! 
' 0 



- -  
Equations (35 - 37) a r e  the three basic equations relating & 9 a n d j  

in a drifting magneto-ionic medium. They have been derived by apply- 

ing Minkowski’s first-order relativistic transform method. 

To derive the characteristic equation for the index of refraction, 

let us assume a harmonically oscillating plane wave to be propagating 

in the z-direction in the unprimed system so that all the field components 

kz). The wave number k, the index of j (wt - 
have a dependence of e 

refraction n, the phase velocity V and the angular frequency w a r e  
P 

related as follows: 

A a result of the assumption of a plane wave propagating in the z-direc- 

tion, (36 - 37) can be written 8s 



i 
* 

Eliminating Hbetween (39) and (40), we obtain 

- 
Substituting the expressions for HandJas given by (39) and (41) into 

(35), we  obtain a homogeneous equation for E 

where 

- -  
B = v/c . (43) 

To find the characterisiic equation for n, the primed quantities contained 

in r' must first be converted into e.xplicit functions of n. Because of 

the Doppler shift, the reiatiGnship between w '  and w, accurate to the 

order cf v/c, is giveri by 

- - -  



. 

k w' = w  (1 - -VJ 
W 

n 
c z  

= w ( l - - v )  

- 
The parameters contained in r" , therefore, can be written as: 

hence, 



Equation (49) can be written in the form 

- -  - 
A -  E = O  

r 

Where the element of the dyadic A are found to be 



2 A = (n - 1)(1 - $, - jZ)  + (1 - I$ )X YY 2 

A = -j(n2 - i)y + X x 
zx Y 

A = -(1 - $ )(1 - x$ - jZ)-j$ Y + jn/3 Y + X 
zz z z X Y  Y X  

Equation (SO) is the same 2s the one previuuslq- obtained by Epstein 

9 after correclicg the sriginal work of Unz . The alternative deriva- 

tion presented here hppears to provide a better view as to how the 

original Appleton-Hartree m a t r k  was transformed as  a result of the 

m-otion. I t  also estab,'ishes a cr i ter im that the character'stic equation 

for n derivable from (53) is orily acruwte to the order of v /c .  This 

characteristic cqhat.on is, of C O ~ I T S C ,  :)bt..iined bv letting the deter- 

minznt cf A be eqial to zero. 

The Polarization Current Mwlcl: 

h the book t~ Ratclifie , the Xp2leton-Hartri:, equation for a 

--- --- 
11 

staticnary magneio -1enic mcdiun, was ckrived b? f*;nsitlering the medlum 



. -  

to be made of polarized matter or bound electrcns. W e  shall call such 

a model "the Polarization Current Model" in contrast to the convection 

current model presented in the previous section. In the polarization 

current model, one had 

and 

- 
J'= 0 

- 
M'=O 

(52) 

(53) 

(54) 

- - - 
where, numerically, the dyadic susceptibility$' is related to d ' defined 

by (30) in the following way 

A s  a result of bsing PI, (24 - 25) Secc:,n;~ 



where 

Two alternative expressions for (56 - 57) are 

If we denote 

then 
- -  

E =  €oE+P 

Within the order of acc.1. :my of v:/c, the apparent difference between 

(60) acd (63) of no ccme.jaence. The basic equations involved in 

the polarization current rnociel are ;iuntmarized bc low: 



These equations play a role similar to (35 - 37) in the convection current 

model. A s  far as the result is concerned it will be shown that two 

models do yield the same anewer as far as the characteristic equa- 

tion for n ls concerned. Equations (64 - 66) may be transformed into 

another form by introducing a field vector defined by 
P 

q ) = H - r x P  (67) 

(68) that gives x E = -jwfi 
' O P  

> " 
A term of the order of (t-;r-! :s :iiscnrdt?d in converting (66) into (70). 



EquatiW (68) and (69) are identical in form to the two equations used 

by Unz who orighlly inveet&ated that prablem based upan the so- 

called EHPMv formuhtioa. Equation (78) can be transformed to the 

force equation interpreted by Epetein. Thus, if we write (70) in the 

form 

9 

8 

P 

Xhing r' given by (29) and ecbstituting it into (72) we may reconstruct 

the differential equation corresponding to (72). We consider 

- 
- j Z ' )  r +jY' P = E + f C x H  (73) = I  - - 0 P 

-1 

0 X' 
0 

which is the same a8 

Jf  we let 



- - 
P = - , " e R  P (75) 

then, (74) is equivalpnl to  

Since t '  is defineti in the primed system, the partial derivation of a func- 

d - 4  tion with respect to t '  is the shine as  +he material derivative - - - 
dt a t  

+ (7 00) evaluated in the unprirned system a s  a result of the first-order 

Lorentz transformation, i. e .  , neglecting terms of the order of (v/c) . 

' 

2 

Equation (76) , therefore, is identical to the force equation considered 

by Epstein after re-interpreting the work of Unz. As we have mentioned 

earlier, as far as the characteristic equation for A is concerned both 

the ccnvection -current model and the polarication model provide the 

same answer. 

are several delicate concepts involved in the polarization model. 

However, it is obvious from this discussion that there 

It 

appears t'izt these concepts and their acceptance can best be understold 
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